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ABSTRACT 

Regardless of the distribution of the adaptation data in 
the testing environment, model-based adaptation methods 
that have so far been reported in various literature incorpo- 
rate the adaptation data undiscriminatingly in reducing the 
mismatch between the training and testing environments. 
When the amount of data is small and the parameter tying is 
extensive, adaptation based on outlier data can be detrimen- 
tal to the performance of the recognizer. The distribution 
of the adaptation data plays a critical role on the adaptation 
performance. In order to maximally improve the recogui- 
tion rate in the testing environment using only a small num- 
ber of adaptation data, supervised weighted training is ap- 
plied to the structural maximum a posterior (SMAP) algo- 
rithm. We evaluate the performance of the proposed weighted 
SMAP (WSMAP) and SMAP on TIDIGITS corpus. The 
proposed WSMAP has been found to perform better for a 
small amount of data. The general idea of incorporating 
the distribution of the adaptation data is applicable to other 
adaptation algorithms. 

1. INTRODUCTION 

The performance of an automatic speech recognizer (ASR) 
degrades when there is a mismatch between the training and 
testing environments. To compensate for this mismatch, 
many methods have been proposed. These can be classi- 
fied into two categories : feature compensation [ I][S] which 
compensates for the observation in the process of feature 
extraction, and model adaptation[2]-[7] which estimates the 
new model parameters using only a small amount of adap- 
tation data. This paper focuses on model adaptation. 
Early model- adaptation methods can be categorized as ei- 
ther direct or indirect adaptation. Direct adaptation is based 
on Bayesian estimation[Z]. Although it will approximately 
converge to the maximum likelihood estimator (MLE)- speakei 
dependent system- as the amount of adaptation data is in- 
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creased, for a small amount of adaptation data. the improve- 
ment in recognition rate is limited. The difficulties associ- 
ated with the determination of the prior density and the slow 
convergence with large number of hidden Markov model 
(HMM) parameters are also characteristics of this approach. 
Indirect model adaptation is an approach based on parame- 
ter transformation[3][4], which does not guarantee the con- 
vergence to the speaker dependent system. In this approach, 
the number of free parameters are small and thus the model 
can be adapted to the testing environment (or new speaker) 
with only a small amount of data. However, this approach 
does not take the full advantage of a large amount of data. 
To overcome some of the demerits of each approach, recent 
methods have combined the two [5][6][7] so that a large im- 
provement for a small amount of data and an approximate 
convergence to the MLE for a large amount of data can 
be achieved. One such method is the structural maximum 
a posferior (SMAP) algorithm which is a transformation- 
based maximum a posreriori (MAP) algorithm. With all 
its good qualities, the performance of SMAP is highly de- 
pendent on the adaptation data, and thus an outlier in the 
test environment can be detrimental to its pertormance. To 
reduce this dependency on the adaptation data, supervised 
weighted training is applied. Here each adaptation token is 
weighted by its confidence measure. 

The organization of the paper is as follows. Section 2 
describes weighted adaptation. Section 3 describes the pro- 
posed WSMAP. Section 4 discusses some experimental re- 
sults. Section 5 finally concludes. 

2. WEIGHTED ADAPTATION 

The objective of a speaker adaptation system is to maxi- 
mally improve its recognition rate using only a small num- 
ber of adaptation data and to converge to the MLE as the 
amount of data increases. In order to achieve this, various 
transformation-based MAP algorithms have been proposed 
[2]-[7]. In all these methods, the effect of each adapta- 
tion data on the recognition rate in the testing environment 
is magnified with a decreasing amount of adaptation data. 
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Adaptation based on an outlier can degrade the performance 
of the recognizer. 

Fig. 1 shows that adaptation based on an outlier data z1 
of the testing environment can give rise to an adapted model 
A:? that can he very different from the model A z s t  of 
the testing environment, and the adaptation based on data 
x2 that is representative of the testing environment can give 
rise to an adapted model A:? that is close to A z s t .  For 
this reason, each adaptation token is given a weight that in- 
dicates its likelihood in the testing environment. Rather than 
discarding outliers, all tokens are incorporated in the adap- 
tation procedure so that the adapted model can converge to 
the MLE of testing environment as the number of data in- 
creases as long as the weight satisfies certain constraints. 

Amusi11c Space I I 
Fig. 1:Influence of adaptation data on adaptation model 

The degree of mismatch of the data is represented by the 
confidence measure of each data. The confidence measure 
of each token is used to weight each token[9]. The weight- 
ing places preference on data that is close to the training 
environment. 

2.1. Convergence with confidence weighting 

In the proposed adaptation procedure, each adaptation token 
is weighted by its confidence measure. In order to verify 
whether the expectation- maximization (EM) algorithm can 
be applied to the weighted adaptation data, the following ar- 
gument is considered. From the following relationship[lO] 

where auxiliary function in obtaining the MLE [IO] 

the HMM, and an observation sequence or an adaptation 
token respectively, it can be easily seen that &(A, A') 2 
&(A, A) gives P(X1A') > P(X1A). For N observations, in- 
equality (1) can be represented by the following expression 
given by Arslan[9]: 

Both the previous and updated weights of the nth adapta- 
tion token wI1 = w(X,,, A) and tu; = w(X,, A') are in- 
corporated into the inequality given in (3). This gives the 
inequality shown by 

7=l 
N 

t &(A, A') - &(A, A) . (4) 
N From the above formulation, when f E,=, log$ 5 0 

then P(X1A') > P(XIA) for &(A, A') > &(A, A). In this 
paper, we do not consider this sufficient condition for the 
convergence property for each confidence weight. Through 
the experiments, we will show that the weight in equation 
(6) satisfies the convergence property. 

2.2. Confidence weight 

The likelihood ratio, which is a measure of the confidence 
on each token, can be formulated as 

(5) 
C t )  = P(x:'(A,) 

(n,N=i,jii P ( X k )  1A3))1/(N-') 

where X i )  is the nth training token of the ith word. There 
are many possible ways to formulate a measure based on 
the above confidence measure. In this paper, we employ the 
following weight to the token: 

w t )  = a + exp(-/ln(P(Xk)IAi)) - In(P(Xt)IAj)) + 71) (6) 

, where A j  is the model with the largest likelihood given 
training token X:). In the above equation, a sets a floor on 
the minimum possible weight on each training token, and y 
controls the level of adaptation data emphasis. In our exper- 
iments we used a value of 0.2 for a, a value of I for y. The 
above expression is similar to the measure used in Arslan[9] 
and Juang[l I]. 

3. WEIGHTED STRUCTURAL BAYES 
ADAPTATION(WSMAP) 

and A, A', S a n d  X are the previous HMM parameter, the up- 
dated HMM parameter, a particular state sequence through 

As mentioned above, early direct adaptation algorithms show 
little improvement in recognition rate for a small amount 
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of data. And early indirect adaptation algorithm cannot 
guarantee the convergence to speaker-dependent model for 
a large amount of data. To eliminate these degradations, an 
algorithm using the hierarchical tree structure was proposed 
by Shinoda[7]. 
The SMAP algorithm presents an effective method for de- 
ciding the a priori probability and estimating the mismatch 
between groups of Gaussian mixtures in HMM. 

3.1. Tree Structure 

To incorporate the benefits of indirect model adaptation when 
the amount of adaptation data is small, parameters are clus- 
tered into nodes and then the adaptation is applied. For con- 
tinuous density HMM, Gaussian mixtures are used as the 
parameters. To make up the tree of the Gaussian mixtures, 
we defined distance between two Gaussian components as 
the sum of Kullback-Leibler divergence and used K-means 
algorithm in a top-down manner, as shown by Shinoda[7]. 

3.2. Weighted Structural Bayes Adaptation 

3.2.1. Normalization of Gaussian distributions 

For adaptation using a tree structure, we generate the nor- 
malized observation vectors and find the normalized Gaus- 
sian distribution using the normalized vectors. The tth ob- 
servation xnt of X, is transformed into the vector ynmt for 
each mixture component m and time t with the parameter 
8, of mixture m,  as shown by 

Ynmt = C; ' /* (X , t  - P m )  (7) 

Then the mismatch between the training environment(@,) 
and the testing environment(& j can be found using the dis- 
tributiouofY,, = {ynml, ...,y ,,T}. When themismatch 
does not exist, x t  follows the distribution of 0, and the nor- 
malized observation vector Y,, follows the standard nor- 
mal distribution N(Y136>I ) .  When the mismatch does ex- 
ist, Y,, follows the distribution o f N ( Y l u ,  q ) ,  where v and 
q represent the shift and rotation of mixture components due 
to the mismatch, respectively. Therefore, we can represent 
the overall mismatch in a node using the parameter (U, 7) .  
For a set of Mk Gaussian mixture components 
G k  = {gl, . . ., g,, . . .: gnf, } at the kth node, the MLE of the 
(i&> f j k )  using the weight w, is given by 

where N is the number of adaptation data and 
P ( m t  = mJX,, A). 

= 

3.2.2. MAP estimator using Hierarchical Tree Structure 

One of the difficulties of using MAP-based adaptation is the 
determination of the a priori probabilities of the parameters. 
The apriori must represent the characteristics of HMM pa- 
rameters, which it may not. However using a hierarchical 
tree structure can alleviate the difficulty of determining a 
priori probability. That is, a child node inherits a priori 
probability o f  a parent node and makes use of it as a param- 
eter for the child node's a priori probability[7]. 

The kth-level MAP estimate (Dk, 7 j k )  can be calculated 
fromthe (k-1)th-nodeestimates ( f i ( k - l ) ,  f i ( k - l ) )  as shown 
by 

N T where r k  is definedas r k  = E,=, w, Et=, Y~~~ 
and ( & , f k )  is a ML estimate of (vk,qk). Tk and <k are 
hyperparameters to define the prior distributions of HMM 
parameters[7]. In this paper, these hyperparameters are not 
varied in all tree layer. In this equation, CO = 6 and VO = I 
are assumed. Finally theAmth MAP estimates of the Gaus- 
sian parameters p, and C, at each leaf (assume tree struc- 
ture has K levels) can be calculated from ( C K ,  7 j ~ )  by the 
following 

where cm and pm are the covariance and the mean for the 
mixture component gm( . )  respectively. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

We used TIDIGITS[ 121 to show the performance of WSMAP 
proposed in this paper. We trained a model for women with 
1254 utterances and tested it  with 1232 men's utterances. 
The feature was 13th MFCC calculated using 30ms frame 
with lOms shift window. The recognition rate of men's test 
using women's model was 80.38% and that of men's test 
using men's model was 98.46%. 
The adaptation result using TREE[7], SMAP and WSMAP 
are presented in and Table 1. As the number of adapta- 
tion data increased, the recognition rate of both SMAP and 
WSMAP converged to 98.46% which is the recognition rate 
of the speaker dependent system. Although both SMAP and 
WSMAP converged approximately to the same limit, Ta- 
ble l shows that WSMAP performed on average 3.5% bet- 
ter than SMAP. This can be attributed to WSMAPs efficient 
use of the adaptation data. The above result was based on 
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Table 1. Recognition rate obtained with supervised adapta. 
tion done with TREE, SMAP and WSMAP 

40 
90 

300 

Number of Adaptation Data I TREE I SMAP 1 WSMAP 
Baseline 1 80.38 I 80.38 1 80.38 

20 1 83.57 1 85.08 I 86.04 
86.68 90.27 91.54 
91.39 94.49 94.90 
91.39 97.29 97.21 

a four level and three node tree structure. However, the au- 
thors have supervised weighted training to be effective for 
different tree structures. 

5. CONCLUSION 
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[7] K. Shinoda and C.-H. Lee, ”Structural MAP speaker 
adaptation using hierarchical priors,” in Proc. IEEE 
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pp.291-298, 1994 
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The performance of the proposed WSMAP algorithm is found 
to he better than the SMAP for a small amount of adapta- 
tion data, and as the amount of data is increased both meth- 
ods converged to speaker dependent model. This shows the 
effectiveness of the supervised weighted training in adapta- 
tion. The general idea of incorporating the distribution of 
the adaptation data is applicable to other adaptation algo- 
rithms. 
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