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ABSTRACT

For multimedia fingerprinting, it is crucial to extract relevant fea-
tures that allow direct access to the distinguishing characteristics
of a multimedia object. Features used for fingerprinting directly
relate to the performance of the entire fingerprinting system. This
paper proposes a novel audio fingerprinting method based on nor-
malized spectral subband centroids. Spectral subband centroid is
selected due to its resilience against equalization, compression,
and noise addition. Both the reliability and the robustness issues
in the fingerprinting system are addressed. The experimental re-
sults show that the proposed method is not only reliable but also
robust against various audio processing steps including MP3 com-
pression, equalization, random start, time-scale modification, and
linear speed change.

1. INTRODUCTION

Protection, management, and indexing of digital contents are be-
coming more prominent with the increasing popularity of elec-
tronic commerce and on-line services. As one of the efficient
solutions to these problems, fingerprinting is receiving increased
attention. The goal of fingerprinting is to provide fast and reliable
methods for content identification [1]. Promising applications [2]
of multimedia fingerprinting are filtering for file-sharing services,
automated monitoring for broadcasting stations, audio recognition
through mobile network, and automated indexing of large-scale
multimedia archives.

Similar to a human fingerprint used for identifying an indi-
vidual, an audio fingerprint is used for recognizing audio. Finger-
prints are perceptual features or short summaries of a multimedia
object. This concept is an analogy with cryptographic hash func-
tion that maps data with arbitrary length to a bit sequence that con-
sists of small and fixed number of bits [3]. Although cryptographic
hashing is a proven method in message encryption and authentica-
tion, it is not possible to directly apply it to multimedia fingerprint-
ing. Cryptographic hash functions are bit sensitive: an alteration of
a single bit in the content will result in a completely different hash
value. This renders cryptographic hash functions not applicable to
multimedia objects that often undergo various manipulations in-
cluding compression, enhancement, speed change, and analog-to-
digital conversion during distribution. The modified version of the
audio should have the same or similar fingerprints with the origi-
nal audio. Various requirements on fingerprinting are summarized
in [4]. In general, the fingerprinting function needs to have the
following properties.

• Robustness (Invariance under perceptual similarity): the
fingerprints resulting from degraded versions of an audio
should result in the same or at least similar fingerprints with
respect to the fingerprint of the original audio.

• Pairwise independence (Collision free): if two audios are
perceptually different, the fingerprints from two audios should
be considerably different.

• Database search efficiency: for the practical applications
with a large-scale fingerprint database (DB), fast DB search
is essential.

In this paper, we presented a new audio fingerprinting method
based on the normalized spectral subband centroid (SSC). Finger-
print matching is performed using the square of the Euclidean dis-
tance. By modelling the normalized SSC as a stationary process,
the threshold for reliable fingerprint matching is obtained. SSC
is originally proposed for speech recognition [5] and has shown
recognition performance comparable to the widely-used cepstral
features especially with noisy speech [6]. Moreover, SSC is re-
silient against the equalization of audio spectrum since it is the
first-order normalized moment of the subband spectrum. By the
comparative test, it was experimentally verified that SSC outper-
forms other widely-used features, such as tonality and MFCC, in
the context of audio recognition. Experiments show that the pro-
posed audio fingerprinting method satisfies the main requirements
of fingerprinting.

This paper is organized as follows. Section 2 describes the
extraction procedure of audio fingerprints used in the proposed
method. Section 3 provides evaluation results on the performance
of the proposed fingerprint. Finally, Section 4 concludes the paper.

2. PROPOSED AUDIO FINGERPRINTING METHOD

An overview of the proposed fingerprinting method is shown in
Fig. 1. First, an input audio is converted to mono and downsam-
pled to 11025 Hz. The downsampled signal is windowed by Ham-
ming window (typically 371.5 ms) with 50% overlap and trans-
formed into the frequency domain using FFT. The obtained audio
spectrum is divided into 16 critical bands (from 300 Hz to 5300
Hz) [7]. For each critical band, normalized frequency centroid is
calculated. The frequency centroids of the 16 critical bands are
used as a fingerprint of the audio frame. A fingerprint block, com-
posed of M fingerprints (typically M = 53 and consequently 848
centroids), from an audio block (typically 9.845 sec) is used for
fingerprint matching. The details of the proposed method are ex-
plained in the next subsections.
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Fig. 1. Overview of the proposed audio fingerprint extraction

2.1. Fingerprint Based on Normalized Spectral Subband Cen-
troids

The frequency centroid of an audio has been widely used for audio
content analysis [8][9]. The frequency centroid has been found to
be related to the human sensation of the brightness of a sound [10].
Paliwal used SSC [5] as features for speech recognition. The SSC
has shown recognition performance comparable to the widely-used
cepstral features especially with noisy speech [6]. The subband
moment of order ν at the i-th subband of an audio spectrum P [k, m]
is defined as

Mν
i [m] =

CBi+1∑
k=CBi+1

kνP [k, m] (1)

where k, m and CBi denote the frequency bin, the frame index,
and the frequency boundary of the i-th critical band respectively.
The SSC is the first-order normalized moment given as follows [6]:

Ci[m] =
M1

i [m]

M0
i [m]

. (2)

Through the above normalization, the SSC is resilient against the
equalization of the audio spectrum. Since the range of Ci[m] is
different at each critical band, it is normalized as follows:

NCi[m] =
Ci[m] − (CBi + CBi+1)/2

CBi+1 − CBi
. (3)

Then the normalized SSC, NCi[m], has a range between −0.5
and 0.5 regardless of the critical bands. The normalized SSC is
used as a fingerprint.

2.2. Fingerprint Matching

In the fingerprint matching, the audios are declared similar if the
distance between their fingerprints is below a certain threshold T .
The problem could be formulated as the following hypothesis test-
ing using the fingerprinting function H(·) and distance measure
D(·, ·):

• L0: Two audios A and A′ are from the same audio if the
distance D(H(A), H(A′)) is below a threshold T .

• L1: Two audios A and A′ are from the different audio if the
distance D(H(A), H(A′)) is above a threshold T .

For the selection of threshold T , the false alarm rate PFA and the
false rejection rate PFR are considered. The false alarm rate PFA

is the probability to declare different audios as similar. The false
rejection rate PFR is the probability to declare an audio and its
processed versions as dissimilar. In practice, PFR is difficult to
analyze since there are plenty of audio processing steps of which
the exact characteristics are not known. Thus it is common to deal
with only PFA for the selection of threshold T .

2.2.1. Fingerprint Modelling

The problem of fingerprint matching is approached by assuming
the SSC as a stationary process. We note that similar analysis
has been performed for watermark detection in [11]. Let x be
the normalized (values between -0.5 and 0.5) SSCs of an audio
block (9.845 sec). We further normalize x by the mean mx and
the variance σ2

x of x as follows:

p[n] =
x[n] − mx

σx
(4)

where n = 1, 2, . . . , N and N is the number of SSCs in an audio
block (typically N = 16 × 53 = 848 for 9.845 sec). Thus p is
the random process with zero mean and unit variance. By simpli-
fying the stochastic model of the normalized SSC as the first-order
autocorrelation, we obtain the following expressions:

R[k] = E

[
p[n]p[n + k]

]
= a|k| ,

Q[k] = E

[
p2[n]p2[n + k]

]
= 1 + (µ4 − 1)b|k| (5)

where µk = E[pk[n]], and a and b are the measures of the cor-
relation of SSC. Through the normalization by the mean and the
variance, µ1 = 0 and µ2 = 1. Fig. 2 shows that the autocorre-
lation obtained from the audio data follows the first-order model
reasonably well. Experiments reveal that the values of a, b, and µ4

are typically 0.59, 0.44, and 3.0 respectively.

Fig. 2. Experimental results of (a) R[k] versus correlation lag k
(b) Q[k] versus correlation lag k
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2.2.2. Reliability Analysis

The square of the Euclidean distance measure D is used for fin-
gerprint matching as follows:

D =
1

N

N∑
n=1

(p[n] − q[n])2 (6)

where p and q are the normalized SSCs from the different audio
blocks. By the central limit theorem, the distance measure D has a
normal distribution if N is sufficiently large and the contributions
in the sums are sufficiently independent [11]. The mean E[D] of
the distance measure D is given as

E[D] =
1

N
E

[ N∑
n=1

(p[n] − q[n])2
]

=
1

N

( N∑
n=1

E[p2[n]] +

N∑
n=1

E[q2[n]]

−2

N∑
n=1

E[p[n]]E[q[n]]

)

= 2µ2 + 0 = 2. (7)

The variance σ2
D of the distance measure D is expressed as

σ2
D = E[D2] − (E[D])2. (8)

The mean of D2 is given as follows:

E[D2] =
1

N2
E

[( N∑
n=1

p2[n] +

N∑
n=1

q2[n] − 2

N∑
n=1

p[n]q[n]
)2

]

= 2 + (2µ4 + 4)/N

+
4

N2

N−1∑
k=1

(N − k)[1 + (µ4 − 1)bk + 2a2k]. (9)

Using the typical values of a, b, and µ4, the standard devia-
tion of the distance measure is given as σD = 0.1479. Through
the normal approximation of the distance measure N(2, σ2

D), the
false alarm rate PFA is given as follows:

PFA =

∫ T

−∞

1√
2πσD

exp
[−(x − 2)2

2σ2
D

]
dx

=
1

2
erfc

( 2 − T√
2σD

)
. (10)

For a certain value of PFA, the threshold T for D can be de-
termined. In the experiments we use T = 0.8. Then we ar-
rive at a very low false alarm probability of erfc(5.7387)/2 =
2.414 × 10−16.

3. EXPERIMENTAL RESULTS

3.1. Performance of the proposed method

The pairwise independence and the robustness of the proposed
method are evaluated. The proposed method is tested using the
fingerprint DB with 8000 songs that include various genres, such
as classic, jazz, pop, rock, and hiphop. Database search and fin-
gerprint matching are performed every 9.845 sec of the input query

audio. Many algorithms have been proposed for DB search [12],
and among them, k-d tree algorithm [13] is used in this paper. The
k-d tree outputs the positions of the nearest neighborhoods of the
input query audio as candidate positions, and fingerprint matching
is performed on these candidate positions for verification.

Pairwise independence is tested with 100,000 randomly se-
lected pairs of audio blocks. Fig. 3 shows the histogram of the
measured distances between the chosen pairs. All the measured
distances were in the range between 1.1 and 2.9. The histogram
of the measured distance shows that the proposed fingerprints fol-
low the stochastic model in Section 2.2 fairly well. The mean of
the measured distances was 1.9781 which is close to 2.0, and the
standard deviation of it was 0.1569 which is also close to 0.1479
obtained from the model in Section 2.2. This result shows that the
proposed method is approximately pairwise independent.

Fig. 3. Histogram of the square of the Euclidean distance between
the fingerprints from different audio blocks

To test robustness of the proposed method, the original au-
dios were subjected to various kinds of audio processing steps, in-
cluding MP3 compression, equalization, random start, time-scale
modification, and linear speed change, and their respective fin-
gerprint blocks were extracted (see [2] for a detailed description
of the processing steps). Mean, standard deviation, and false re-
jection rate of the measured distance between the original and
the processed audio fingerprints are shown in Table 1 for ran-
domly selected 5000 audio blocks in the 8000 song DB. For all
the tested audio processing steps, the measured distance was be-
low the threshold (T = 0.8). The table shows that the proposed
method is robust against the common audio processing steps.

3.2. Comparison of the proposed method with other features

The robustness of the proposed normalized SSC is compared with
that of the other audio features. Among the various audio fea-
tures [8], tonality of subbands [14] and Mel Frequency Cepstral
Coefficients (MFCC) are selected due to its popularity in audio
and speech recognition respectively. We tested the features using
the DB with 100 audios. Audio features, normalized SSC, tonal-
ity and MFCC, are generated from the 100 audios. The Euclidean
distance is used as a measure of the distance between the original
and the processed audios for all three features. For each frame of
a processed audio, we extract features (16 dimensions), search the
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Table 1. Mean, standard deviation (Std) and false rejection rate
(with threshold T = 0.8) of the measured distance for different
kinds of audio degradations

Processing Mean Std PFR

MP3 compression (32 kbps) 0.2297 0.0654 0.0
Equalization (3 dB) 0.0243 0.0091 0.0
Random start
(worst case 92.9 ms shift) 0.2567 0.0704 0.0
Time scale (+4%) 0.3165 0.0903 0.0
Time scale (-4%) 0.3236 0.0916 0.0
Linear speed (+1%) 0.2715 0.0922 0.0
Linear speed (-1%) 0.2873 0.0961 0.0

DB exhaustively, and find the DB position with the minimum Eu-
clidean distance. If the DB position with the minimum Euclidean
distance is corresponding to the input processed audio frame, it is
assumed that the input processed audio frame is correctly identi-
fied. Fig. 4 shows the probability of the correct identification for
the three features. The probability stands for the robustness of the
feature space against the audio processing steps. The result shows
that the normalized SSC is more robust than other features for au-
dio recognition.

Fig. 4. Robustness of the features against audio processing steps

4. CONCLUSION

For a reliable fingerprinting system, the features should be both
fairly discriminative and robust. In this paper, we presented a new
audio fingerprinting method based on the normalized SSC. Finger-
print matching is performed using the square of the Euclidean dis-
tance. The problem of reliable fingerprint matching is approached
by assuming a stationary process as a model for the normalized
SSC. The stochastic model was experimentally verified. Experi-
ments show that the normalized SSC is pairwise independent with
different inputs and robust under quality preserving signal process-
ing steps. In the comparative test, the normalized SSC outper-
formed other widely-used features, such as tonality and MFCC, in
the context of audio fingerprinting.
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