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Abstract

In this paper, a maximura posteriorisound source localization
(MAP-SSL) algorithm is proposed for reverberant and noisy
conditions. It is derived by incorporating a sparse prior on
the source location into the existing maximum likelihood sound
source localization (ML-SSL) framework. The criterion in de-
riving the proposed MAP-SSL algorithm is similar to the crite-
rion used in deriving the existing ML-SSL framework, except
that in the proposed criterion, a sparse source prior is added.
The source prior that enforces a sparse solution plays a key role
in improving the SSL performance. The experimental results
show the proposed MAP-SSL algorithm outperforms two pop-
ular algorithms based on the ML-SSL framework.

Index Terms: Sound source localization, reverberation, a
sparse source prior .

1. Introduction

A sound source localization (SSL) algorithm estimates the lo-
cation and direction of the sound source based on the received
signals at the microphone array. The estimation is often consid-
ered in reverberant and noisy environment, and under such con-
ditions, many SSL algorithms have been proposed [1, 2, 3, 4].
Recently, the maximum likelihood sound source localization
(ML-SSL) framework proposed by Zhargg al. [1] has shown

to be effective in both reverberant and noisy conditions. The
ML-SSL framework is also closely related to the steered re-
sponse power-phase transform (SRP-PHAT) algorithm [5]. The
ML-SSL framework searches all possible finite source direc-
tions and finds the direction of source that maximizes the cost
function proposed in [1].

This paper proposes an MAP-SSL algorithm for the SSL
in reverberant and noisy conditions. The proposed MAP-SSL
algorithm is based on maximizing the posteriori of the source.
The proposed MAP-SSL algorithm is derived using the sparse

representation. In [6], the sparse signal representation was used

without considering reverberation for both narrow-band signal
and wide-band signal localization. The sparse signal represen-
tation can be written as followst = As + v wherex € CM,

A € CMXN g ¢ CN andv € CM are a vector represent-
ing targets, a matrix describing possible over-complete basis, a

source vector to be learned and additive Gaussian noise, respec-

tively. When only a single source is active, the source vector
must be estimated with most of its entries set to zeros while min-
imizing the square error betwedys andx. Various algorithms
have been proposed to obtainsing the sparse signal represen-
tation, and a recent algorithm that has shown great promise is
the sparse Bayesian learning (SBL) [7]. This algorithm obtains
an estimate of the source vectthat minimizes théy-norm by

estimating the variance of the source posterior probability such
that the variance of the source vector entry with value near zero
should be near zero. This SBL is applied to solve our criterion
in reverberant and noisy conditions. When a source is active,
the proposed MAP-SSL algorithm estimates a sparse solution
for the location of source, and the sparse source prior term in
the proposed MAP-SSL algorithm plays a key role in improv-
ing the source localization performance over other algorithms
such as the various variants of ML-SSL framework.

The paper is organized as follows. Section 2 formulates
the problem and takes assumptions. Section 3 proposes a max-
imum a posterorisound source localization algorithm. Section
4 gives the performance evaluation of the proposed MAP-SSL
algorithm. Finally Section 5 concludes the paper.

2. Problem formulation and assumptions

We consider the SSL in reverberant and noisy conditions. In
our formulation, assuming far field [5] i. e. that a source is very
far from the microphones, the set of all possible finite source
directions can be given as a function of the all possible finite
integer time delays,

7C
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whereC, fs andd are the propagation velocity of sound, the
sampling rate and the distance between two microphones. Here,
T € [—7T™ ™% is the time delay with the maximum pos-
sible time delayr™“", givenC, f,, andd. The range ofj is

from —% to 7 as a unit of radian. Let direction of an active

source such that,[n] denotes active source froffi—1 — =
direction. When a microphone array is composedbmicro-
phones with an arbitrary layout for placement, the signal model
in time domain is given as,

6 = arcsin(

N
Zmln] = Y hmi[n] * si[n] + vm[n] @)

=1
wherex denotes convolution,= 1, .., N is the index of source,
andm = 1,..., M is the index of microphone. Here,,[n],
si[n], hmi[n] andv,, [n] are the received signal at theth mi-
crophone, theth direction source, the room impulse response
from the ith direction source to the:th microphone and the
additive Gaussian noise at theth microphone. Note that the
summation term includes only one active source. Assuming that
room impulse response..;[n] does not change with time, the
Fourier transform of (2) is given as

Xm(w) = _ZHmww)Si(vam(w) (3)



where X, (w), Si(w), Hmi(w) and V;,(w) are the Fourier
transforms ofz., [n], si[n], hm:[n] and v,[n], respectively.
Here, H,,.;(w) can be decomposed into direct path and rever-
berant path signals [1, 3], as

Hpi(w) = ami(w)e 7™ + Rpni(w) 4
Therefore,
N .
Xm(w) = Z[amz‘(w)e"“w+Rmi(w)]Si(w)
+Vim (w) 5)

wherea,;(w)e 7™ and R.;(w) are the direct path and re-
verberant path signal from thedirectional source to the:th
microphone. Here the time delay of the direct path is denoted
asTm;. If we consider thd st microphone as the reference mi-
crophone, ther,,; can be described as the relative time delay
from the1st microphone to the:th microphone as

’

Tmi = Tli — Tmi- (6)
The vector-matrix form of (5) is given as,
x(w) = AW)sw)+RWsW) +vw) (7
where
x(w)=[X1(w), s Xnr(@)] " (€ CM),
A@w)=[a1(), ... an (W)](€ C**N),
a;(w)=[a1;(w), aZi(w)eij%, - aMi(w)efijM?‘]T(E (CM)7
s(w)=[S1(w), -, Sn(w)]" (€ CV),
R(w)=[r1(w), ..., en(w)](e C*M),
I‘»;(w):[Rli, ey Rjui]T(G (CJW),
V(W) =[V1(w), -y Var (@) (€ CY). ®)

The superscrigl’ denotes the transpose operator. In this formu-
lation, A (w) is known as the matrix related to the all possible
finite source directions.

3. A maximum a posteriorisound source
localization

We explain the relation between the existing ML-SSL frame-
work [1] and the proposed MAP-SSL algorithm in our problem
formulation. As the ML-SSL framework in [1], the combined
total noise is defined as

Vi) = 1:(w)Si(w) + v(w). ©)

Thus, the complex Gaussian likelihood of received signals can
be written as

p(x(w)]as (@), Si(w), Qf (w))=(m) M |Qf ()| ‘exp(—Ji(w))
(10)

where

Ji(w) = [x(w)-ai(w)Si(w)]7Qf(w) ™ [x(w)—ai(w)S(w)]

and the covariance matrix

Qi (w) E[ri(w)Si(w)(rs (@) 8i (w)) "]
+E[v(w)v (w)].

The superscriptd denotes the Hermitian transpose operator.
Here, reverberation and noise are assumed uncorrelated and fol-
low the zero-mean complex Gaussian. The ML-SSL framework
determines a direction of sources#is direction that leads to the
largest value of (10) in all possible finite source directions. Con-
sidering all possible finite source directions, we formulate the
joint complex Gaussian likelihood distribution of the received
signals as

P(x(W)|AW),5(w), Q°(w)) = (1) ~M1Q° (W) eap(—J (w))
(11)

where
J(w) = [x(w)-Aw)s@)] " Q°(w) " x(w)-A(w)s(w)]
and the covariance matrix

Q*(w) ER(w)s(w)(R(w)s(w))"]
+E[v(w)vT(w)].

To maximize (10) for theith source, as in [1], we take the
derivative of.J(w) with respect toS; (w), set it to zero and then
have the following solution fo6; (w),

a;(w) " Qf (w) " 'x(w)
a;(w)1Qf(w)~tai(w)’

The source vector of (11x(w) = [S1(w), ..., Sn(w)]T is a
sparse vector that has one non-zero element when an active
source exists. Therefore, we obtain the source direction esti-
mate by maximizing posterioriof source with a sparse source
prior. As the SBL in [7], the parametric form of the Gaussian
source prior is defined as

Si(w) = (12)

N
p(sw)y) = [IN(Si(w);0,7) (13)
i=1
wherey = [y1, ..., 7~] is @ vector of source variances. Comb-
ing the likelihood and the source prior, the marginal likelihood
is given as,

p(x(w); v, A(w), Q°(w))
- / P(x(w) A (@), 5(w), Q°(w))p((w); 7)ds(w).
(14)

We have our criterion that maximizes the marginal likelihood of
(14), considering the sparse source prior. The source variances
are estimated such that the marginal likelihood is maximized as
shown below

7" = arg max Ep(s(w)qy) [P(x(w)|A(w), s(w), Q°(w))]-
(15)

This is equivalent to minimizing the negative log-marginal like-
lihood. That s,

arg min £(v) (16)

~

7*

with the negative log-marginal likelihood given by

L(v)2—log / p(x(w) | A (W), 5(w), Q° (@) P(s(w); 7)ds(w)
— log p(x(w); 7, A(w), Q°(w))
—log |5 ()] + x(w) 57 (w)x(w)
(17)



where 3;(w) 2 Q°(w) + AW)TAf(w) and T
diag(v1,...,y~n). We use a fixed point update rule to estimate
~™ to converge fast, as in [8]. Given the posterior distribution

of s(w) is given as

s(w) ~ N(p(w), E(w)) (18)
where
pw) = TAWTS N (w)x(w),
Sw) = T-TAW" S (W AWT.
Finally, for a givery*, we choosé(w) as,
$(w) =p"(w) 19)
wheres(w) = [S1(w), ..., Sn(w)]T. The estimated source vec-

tor §(w) has the one largest value that is related to the direction
of source. The covariance mat®¥°(w) is involved to consider
the effect of reverberation in the proposed MAP-SSL algorithm.
Note that the covariance matri@“(w) determines the weight
( significance ) placed on the likelihood over the sparsity when
obtaining the source estimate. As in [1], assuming all the rever-
berations and noises are uncorrelated, the covariance matrix is
given as,

Q°(w) diag(r1(w), ...,

) (20)

where

E[|Rir ()*S1(w) "] + E[| Riz(w)[*|S2(w)*] +
-+ El[Rin (@) *Sn (@) [*] + E[|Vi(w)[].

Ki(w) =

But the diagonal element of covariance matrix(w) can be
approximated for an active source as in [1] to

ki(w) = BIXi(w)[* + (1 = B E[Vi(w)[’]

where is a free parameter related to the power of the rever-
berant signal. Finally, the direction of source is estimated as the

following criterion,
/ 185 (w)|dw

Comparing to the solution of (12), the proposed MAP-SSL al-
gorithm has a sparse solution, enforcing the sources for the
other directions to be near zeros in the all possible finite source
directions.

(21)

= arg max (22)

i€1,,,N

4. Performance evaluation

To evaluate the performance of the proposed MAP-SSL algo-
rithm, the experiments are performed on both synthetic and real
data. The proposed MAP-SSL algorithm is also compared to the
variants of ML-SSL framework in [1] for localizing a source in
reverberant and noisy conditions.

4.1. The experiments on synthetic data
4.1.1. Acoustic environment

An acoustic room with size 6 4 x3 meters is modeled. Four

omnidirectional microphones are placed linearly and near the
center of room. The locations of microphones are (3, 1.13, 2),
(3,1.26, 2),(3,1.39, 2) and (3, 1.52, 2), spacing 0.13m between
microphones. A speaker is talking at a distance of about 2 m
from microphones. Room impulse responses from a location of

single speech to microphones for several locations of speaker
are generated by image method [9]. To assess the impact of
reverberation on source localization performance, we synthe-
size room impulse response with 300ms and 500ms reverbera-
tion time. The received signal sampled at 16kHz is obtained by
convolving a speech with each room impulse response, adding
white Gaussian noise. The Fourier transform of the received
signals employs 32ms window, overlapping 16ms.

4.1.2. Construction oA (w) related to all possible finite source
directions

The proposed MAP-SSL algorithm construcASw) related
with the arrangement of microphones, assuming that a source
is very far from the microphones. Considering the distance
dm(=0.13m x (m — 1)) between thelst microphone and the
mth microphone, the maximum possible time dela,)?,”“” is
calculated by,

(23)

where | x| outputs the largest integer smaller than f; is
16kHz, and” is 34Qim/s). The range of the time delay,'m for

the mth microphone, is from-, m’“” andT;,lm”. Therefore,
the direction resolution of the source from (1) is abbift. The
dimension of the constructe(w) is4 x 12 matrix.

4.1.3. Experimental results of the SSL accuracy

To compare to the proposed MAP-SSL algorithm, the SRP-
PHAT algorithm that is a version of the ML-SSL framework,
and the ML-SSL framework perform hypothesis testing at about
15° intervals. Table 1 shows experimental results of source lo-
calization (SL) accuracy on the synthetic single source data ac-
cording to reverberation and noise levels. We report the average
accuracy, in terms of what portion of the SSL estimates (out of a
total of 235 ( time blocks k 10 ( various locations of the source
)x100 ( monte carlo simulations )) is withitb° of the ground
truth angles that we know. The parametet= 0.1 of the ML-

SSL framework is set to have best performance as in [1]. The

Table 1: Experimental results of the SSL accuracy on the syn-
thetic single source. (A) reverberation time = 300 ms.(B) rever-
beration time = 500 ms.

Input SNR| SRP-PHAT ML-SSL (3=0.1)] MAP-SSL (3=0.1)
200B | 882% 90.6 % 91.7%
15d8 | 824% 89.7 % 91.5%
10dB | 80.2% 89.1% 91.4%
5dB 721% 84.3% 90.6%
0dB 64.3% 82.1% 90.1%

(A)

Input SNR] SRP-PHAT| ML-SSL(3=0.1)| MAP-SSL (3=0.1)
200B | 811% 82.1% 90.4 %
15dB | 77.4% 787 % 89.3%
10dB | 73.3% 744 % 88.9 %
5dB 68.1% 67.2% 872 %
0dB 56.4 % 56.7 % 86.3 %

(B)

MAP-SSL algorithm with3 = 0.1 outperforms SRP-PHAT al-
gorithm and ML-SSL framework for various reverberation and



noise levels. Especially, in highly reverberant and noisy condi-
tions, the improvement of the SSL accuracy is remarkable. The
proposed MAP-SSL performs better than the SRP-PHAT algo-
rithm and the ML-SSL framework in reverberation and noisy
conditions.

4.2. The experiments on real data

We next test the proposed MAP-SSL algorithm on real data cap-
tured by 4 channel audio interface. Figure 1 represents an ex-
perimental setting in real room. The acoustic room size ix5.7

2 x3 meters. Four omnidirectional microphones are placed lin-
early and near the center of room. The locations of microphones
are (3, 0.74, 2), (3, 0.87, 2), (3, 1, 2) and (3, 1.13, 2), spac-
ing 0.13m between the microphones. A speaker is talking at a
distance of about 1.5 m from microphones. The ground truth
angles of the speaker are$0°, —75°, ..., 90°] with 15° direc-

tion resolution. The Fourier transform of the received signals
sampled at 16kHz employs 32ms window, overlapping 16ms.
For each truth angle, the length of the received signal is about
3s. We report the results on the percentage of frames that are
within 15° of the ground truth angles. Table 2 shows experi-
mental results of the SSL accuracy on the real data. The pro-
posed MAP-SSL algorithm performs better than the SRP-PHAT
algorithm and the ML-SSL framework.

Room size= 5.7m X 2m X 3m
Microphones are at 1m height while s is at

1.75m height
®S

Figure 1: An experimental setting in real room.

Table 2: Experimental results of the SSL accuracy on the real
data.

SRP-PHAT|
80.2 %

ML-SSL (3=0.1)
822%

MAP-SSL (3=0.1)
85.4%

4.3. The limitation of the proposed MAP-SSL algorithm

The proposed MAP-SSL algorithm has a limitation. If the ma-
trix A(w) has a high overcompleteness ratio [7], i. e. that the
number of all possible finite source directions to the number
of the microphones ratio is very high, the performance of the
MAP-SSL algorithm may be degraded due to not obtaining the
exact sparse solution fa(w). But, if a proper overcomplete-
ness ratio is used to construct the matAixw), the proposed
MAP-SSL algorithm can get the accurate source location.

5. Conclusions

In this paper, a MAP-SSL algorithm is proposed. When a
source is active, the criterion in deriving the proposed MAP-
SSL algorithm is similar to the criterion used to derive the ex-
isting ML-SSL framework, except that in our criterion a sparse
source prior that enforces a sparse solution is added. The sparse
source prior plays a key role in improving the source localiza-
tion performance over other algorithms such as the variants of
ML-SSL framework. In experiments, the proposed MAP-SSL
algorithm outperforms the variants of the ML-SSL framework
for both the synthetic data that have various reverberation and
noise levels and the real data.
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