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Abstract: “A Picture is worth a thousand words”. Given an image, humans are able to deduce
various cause-and-effect captions of past, current, and future events beyond the image. The task of
visual commonsense generation has the aim of generating three cause-and-effect captions for a given
image: (1) what needed to happen before, (2) what is the current intent, and (3) what will happen
after. However, this task is challenging for machines, owing to two limitations: existing approaches
(1) directly utilize conventional vision–language transformers to learn relationships between input
modalities and (2) ignore relations among target cause-and-effect captions, but consider each caption
independently. Herein, we propose Cause-and-Effect BART (CE-BART), which is based on (1) a
structured graph reasoner that captures intra- and inter-modality relationships among visual and
textual representations and (2) a cause-and-effect generator that generates cause-and-effect captions
by considering the causal relations among inferences. We demonstrate the validity of CE-BART on the
VisualCOMET and AVSD benchmarks. CE-BART achieved SOTA performance on both benchmarks,
while an extensive ablation study and qualitative analysis demonstrated the performance gain and
improved interpretability.

Keywords: deep learning; visual–language reasoning; visual commonsense generation; video-
grounded dialogue; VisualCOMET; AVSD

1. Introduction

Visual Commonsense Generation (VCG) [1] is a challenging task that requires the
generation of commonsense and cause-and-effect captions regarding visual and textual
information. To be specific, given a still image and a description of the event shown in
that image, the goal is to understand the cause-and-effect relations within the event and
generate free-form natural language sentences that describe the inferred past/future events
and the present intents of characters in the image. For example, in Figure 1, given the image
on the left of a woman approaching a man at a table, the agent generates three kinds of
cause-and-effect captions: (1) sometime in the past, she walked into the room and saw a
man sitting at the table; (2) the intent of the woman is to talk to the man; (3) sometime in
the future, she will sit down at the table and speak with him about a serious topic. While
reasoning about the rich dynamic story of the visual scene is easy for humans, it is difficult
for machines since it requires a higher-order cognitive-level understanding of the world.

In recent years, several visual reasoning tasks [2–4] were proposed and drew attention
in the computer vision and natural language processing communities. To elaborate on
a few such proposals, the Visual-Question-Answering (VQA) task defines a question-
answering paradigm as a test to measure a machine’s reasoning abilities for a given image
or video. The Visual Dialog (VisDial) task asks a series of questions in the form of dialogue
grounded in an image or video. The Visual-Commonsense-Reasoning (VCR) task further
requires the machine to provide a rationale explaining why its answer is correct. While
the above visual reasoning tasks are defined as recognition-level understanding and only
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consider the concepts and relations within the provided image or video, VCG focuses on
reasoning about the rich cognitive-level dynamic story that goes beyond the directly visible
contents by requiring cause-and-effect caption generation. Piaget’s cognitive development
theory [5] describes the drive of human intelligence to know in two forms, that is as states
and transformations, suggesting that people must possess functions to represent both
static and transformational aspects of reality. If the former tasks represent reasoning in a
stationary situation, then VCG represents reasoning in a transforming situation. Hence, the
research on VCG opens the door for a major leap from recognition-level understanding to
cognition-level reasoning.
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Figure 1. Illustration of visual commonsense generation. Given a person in an image and a corre-
sponding textual event, an agent is required to generate (1) what needed to happen before, (2) what is
the current intent of person, and (3) what will happen after.

Only a few works on VCG have been published. Park et al. [1] constructed a benchmark
for visual commonsense generation, VisualCOMET, and proposed the baseline method.
Xing et al. [6] proposed Knowledge-Enhanced BART (KM-BART), which leverages knowl-
edge from external corpora to pre-train the BART. Previous approaches only operated on
the conventional learning scheme of visual and textual information, overlooking the dis-
tinctiveness of cause-and-effect generation. Two major limitations of previous approaches
are that they (1) directly utilized conventional vision–language transformers to learn rela-
tionships between input modalities and (2) ignored relations among target captions, but
considered each caption independently. Due to the first limitation, previous approaches
ignored the intra- and inter-modality relationships, which have proven to be beneficial to
transformer-based generation [7]. Due to the second limitation, the existing models pay no
attention to the intrinsic structure of the task or dataset. As the goal of VCG is to generate
cause-and-effect captions, it is essential to consider causal relations among each inference
for before, intent, and after. While existing approaches consider these inferences as separate
cases and are trained independently, we argue that the generation of these three captions
should be considered holistically.

In this paper, we address the aforementioned limitations with our novel Cause-and-
Effect BART (CE-BART), which is composed of (1) a Structured Graph Reasoner (SGR) and
(2) a Cause-and-Effect Generator (CEG). The SGR first builds semantic graphs for each
modality to interpret the intra-modality relationships from the spatial or token domain via
graph structures, then it captures higher-order semantic relations among graphs (i.e., inter-
modality relationships) via tripartite graph attention and strengthens the multimodal graph
representations. As SGR comprehends the intra- and inter-relationships interspersed in
multimodal representations beforehand, the latter workload of the transformer-based CEG
is unburdened, allowing it to focus more on understanding the commonsense and cause-
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and-effect inference of the given input. The CEG generates cause-and-effect captions for
before, intent, and after situations. While all existing approaches for visual commonsense
generation are trained to generate each cause-and-effect caption separately (i.e., there are
no connections between the generation of before, intent, and after, even for the same image),
the proposed CEG infers all three cause-and-effect captions holistically by considering
the causal relations. It consists of one transformer encoder for modeling multimodal
representations and three transformer decoders each for generating the before, intent, and
after captions. To consider causal relations among cause-and-effect inferences, the decoders
for intent and after are connected to those of before and intent, respectively. Through
causal connections between the three decoders, it can attend to the hidden states of the
former decoders, which take the role of cause to generate effect captions (i.e., the proposed
intent/after decoder can attend to not only the hidden states of the transformer encoder,
but also the hidden states of the before/intent decoder).

The overall contribution and novelty of this work are summarized as follows: (1) We
propose CE-BART, which is a novel transformer-based reasoning pipeline to handle both
comprehensive understandings of multimodal input and cause-and-effect caption gen-
eration. (2) We extended BART with a graph-based information encoder and to have
three decoders in order to address the issues of existing VCG methods. (3) We empirically
show that our proposed CE-BART is the state-of-the-art on the VisualCOMET and AVSD
benchmarks.

2. Related Works
2.1. Commonsense Reasoning

Commonsense knowledge has attracted a great deal of attention in both the computer
vision and natural language communities. Commonsense or causality knowledge refers to
the basic level of practical knowledge and reasoning about everyday situations and events
commonly shared among most people [6,8]. For example, if the Sun is out, it is unlikely to
rain; if we drop a cup, it is likely to break. Such causality knowledge has been shown to be
beneficial for many tasks [9,10], and thus, it is essential for machines to learn to understand
causality [11].

In the field of natural language processing, several commonsense Knowledge Bases
(KBs) have been constructed to help machines better understand commonsense causality.
ConceptNet [12] and ATOMIC [13] are widely used commonsense KBs that leverage human
annotations to provide high-quality causality knowledge. These KBs are built based on
tuples (s, r, o), where s and o are subject and object phrases and r defines the relation
between them. Relations in commonsense KBs include causes, because, before, as a result,
..., which are essential for learning causality. Bosselut et al. [14] proposed COMET, a
transformer-based architecture, for automatic commonsense knowledge base completion.
COMET is trained to predict the object o, given subject s and relation r. In the field of
computer vision, the Visual Commonsense Reasoning (VCR) task [4] has been proposed,
which is a visual question-answering benchmark that requires the machine to provide a
rationale explaining why its answer is correct.

2.2. Visual Commonsense Generation

Park et al. [1] proposed the task of visual commonsense generation and a correspond-
ing benchmark, VisualCOMET, which aims to generate cause-and-effect descriptions for a
given image and corresponding textual event and place. VisualCOMET is a visual com-
monsense knowledge base where an image and corresponding textual event and place take
the place of the object in ATOMIC. There are only a few works [1,6] dealing with the task
of visual commonsense generation. Park et al. [1] first proposed a baseline model based on
GPT-2 [15]. The baseline model feeds visual and textual context as inputs and is trained
to predict each of the cause-and-effect descriptions. Xing et al. [6] proposed Knowledge-
enhanced Multimodal BART (KM-BART), which utilizes a BART [16] to pre-train on large
external datasets and leverages knowledge from them. KM-BART was first pre-trained with



Sensors 2022, 22, 9399 4 of 13

knowledge-based commonsense generation by leveraging knowledge from COMET [14],
attribute and relation prediction using the Visual Genome benchmark [17], and masked
language and region modeling using various pre-training benchmarks. It was then fine-
tuned on the VisualCOMET benchmark to achieve state-of-the-art performance on the
VisualCOMET benchmark. However, we argue that these systems operate on the conven-
tional learning scheme of visual and textual information, overlooking the distinctiveness of
the cause-and-effect generation task, and possess two major limitations: (1) conventional
vision–language transformers are directly utilized to learn relationships between input
modalities; (2) every training example is trained independently without considering the
relations with others.

3. Cause-and-Effect BART

First, we provide a formal definition of the visual commonsense generation task [1]
as follows. We are given tuples of (v, e, p), consisting of an image v, the event description
e, and the place description p. The goal of visual commonsense generation is to generate
three cause-and-effect captions corresponding to (1) what needed to happen before, (2) what
is the current intent of the person, and (3) what will happen after.

Figure 2 shows a schematic of Cause-and-Effect BART (CE-BART), consisting of a
multimodal input encoder, structured graph reasoner, and cause-and-effect generator. The
multimodal input encoder first embeds three input modalities into the feature space. Then,
the structured graph reasoner captures intra- and inter-modality relationships among
the input modalities. Finally, the cause-and-effect generator generates cause-and-effect
captions by considering the causal relationships among inferences. All three components
of CE-BART are elaborated on in the following subsections.
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Figure 2. Illustration of Cause-and-Effect BART (CE-BART), which is composed of a multimodal input
encoder, structured graph reasoner, and cause-and-effect generator. (1) Multimodal input encoder: we
first obtain multimodal features (F v,F e,F p) using pre-trained models. We used mask R-CNN for the
visual inputand the BART word-embedding layer for textual inputs. (2) Structured Graph Reasoner
(SGR): we then built semantic graphs (Gv,Ge,G p) and strengthened their representations (Sv,S e,S p)
by capturing the intra- and inter-modality relations. (3) Cause-and-Effect Generator (CEG): we finally
generated cause-and-effect descriptions (Ob,Oi,Oa) using the BART-based transformer architecture,
which considers the causal relations among inferences.

3.1. Multimodal Input Encoder

Following the previous work on visual commonsense generation, we used the mask
R-CNN [18] to detect the visual person, which extracts N v number of appearance features
A = {ai}N

v

i=1 and their corresponding location features B = {bi}N
v

i=1. Each location fea-
ture bi = [xi, yi, wi, hi] represents a spatial coordinate, where [xi, yi] denotes the relative
coordinate of the top-left point of the bounding box, while [wi, hi] denotes the width and
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height of the box. We calculate the final visual feature as F v = {vi}N
v

i=1 ∈ RN v×dv , where
vi = waai + wbbi and wa, wb are learnable weights that embed both features into the visual
feature dimension dv.

There are two types of text for each image (i.e., event e and place p). Each sentence
for event and place is fed into the word-embedding layer of the pre-trained BART to be
further utilized. We obtain the textual feature as follows: F e = {ei}N

e

i=1, F p = {pi}N
p

i=1,
where N v,N p are the number of token features, and ei, pi ∈ Rdt are the embedding of the
i-th token in the event and place, respectively. Further, Table 1 summarizes the descriptions
of the important symbols used in this paper.

Table 1. Descriptions of the important symbols used in this paper.

Symbol Description Symbol Description

v Input image e Input event description
p Input place description A Appearance feature
B Location feature F v Input visual feature
F e Input event description feature F p Input place description feature
Gv Image semantic graph Ge Event semantic graph
G p Place semantic graph Sv Strengthened semantic image feature
S e Strengthened semantic event feature S p Strengthened semantic place feature
Ob Before caption Oi Intent caption
Oa After caption

3.2. Structured Graph Reasoner

In order to capture the intra-modality relationships from individual modalities (i.e., im-
age, event, and place) and the inter-modality relationships among the input modalities,
the structured graph reasoner first builds semantic graphs for each modality: an image
semantic graph Gv, an event semantic graph Ge, and a place semantic graph G p. Motivated
by [19], which projects visual features in the spatial domain into the graph domain for
relational reasoning over a global context, the structured graph reasoner performs graph
convolutions to capture intra-modality relations. It then captures the higher-order semantic
relations among graphs (i.e., inter-modality relationships) via tripartite graph attention
to strengthen the multimodal graph representations. The final strengthened semantic
representations (Sv,S e,S p) are fed into the following cause-and-effect generator.

For simplicity, we denote the feature representation as F x and the semantic graph
as Gx for each modality x ∈ {v, e, p}. We first project the feature representation F x into
semantic graph Gx, which is a lightweight fully connected graph. Since we will directly
reason over graph nodes, the projection into the graph domain is formulated as a linear
combination among input features. A linear combination over input features can be thought
of as weighted global pooling or global attention. We divide graph projection into two
parts: dimension reduction and graph projection. In dimension reduction, we embed all
three modality features into the same small feature space. In graph projection, we compute
the weights for weighted global pooling. Finally, embedded features are weighted globally
pooled to form the graph node feature:

Gx = f proj(F x; W f proj)× f reduc(F x; W f reduc) ∈ RN x×dg , (1)

where the dimension reduction function f reduc parameterized by W f reduc projects each
feature into the graph feature dimension dg and the graph projection function f proj parame-
terized by W f proj produces the weights for linear combination. Here, both f reducand f proj are
1D convolution layers with a kernel size of 1.

In order to capture intra-modality relations in individual semantic graphs, we utilize
graph convolution [20] to update node representations and obtain Ḡx. We reason over
fully connected graphs by learning the edge weights, which model the interactions among
globally pooled graph node features of each modality. Given a fully connected graph Gx,
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graph convolution learns the edge weights that correspond to the correlations between node
representations. We divide graph convolution into two parts: channelwise convolution and
nodewise convolution. By implementing 2D convolution with two 1D convolutions, graph
convolution can be more efficient. A single layer of graph convolution is formulated as:

Ḡx
= ΛGxWx = ((I −Ax)Gx)Wx, (2)

where Λ and Ax are N x ×N x an adjacency matrix for diffusing information across nodes
of Gx, Wx ∈ Rdg×dg denotes the state update weight, and I ∈ RN x×N x

is the identity
matrix. Here, the adjacency matrix Ax is randomly initialized and learned during train-
ing, together with Wx, and the identity matrix serves as a shortcut connection. We can
implement Equation (2) using two consecutive 1D convolution layers along different di-
rections: channelwise convolution (i.e., modeling (I −Ax)) and nodewise convolution
(i.e., modeling Wx).

Finally, we capture inter-modality relations among the three semantic graphs (Ḡv, Ḡe, Ḡp)
via tripartite graph attention and calculate the strengthened semantic representations
(Sv,S e,S p). We perform graph attention over a tripartite graph, which connects all the
nodes in individual modalities to all the nodes belonging to the other modalities. By
doing so, every node in each modality learns to integrate informative semantics from
the other modalities into its representation in order to effectively capture inter-modality
relations. First, we concatenate Ḡv, Ḡe, Ḡ p along the node axis to make a tripartite graph
structure ḠT , where each node is connected to all other nodes belonging to different modal-
ities: ḠT

= [Ḡv||Ḡe||Ḡ p
] ∈ RN T×dg . We perform graph attention [21] over ḠT to calculate

the multi-head attention to capture relations between each node and its neighboring nodes
(i.e., inter-modality relations):

ST = GAT(ḠT
), (3)

Sv,S e,S p = slice(ST), (4)

where the slice(·) operation slices the multimodal representations along the node axis
with the corresponding length of each modality. Graph attention effectively models the
interaction among graph nodes through the self-attention mechanism inside. Basically, it
calculates self-attention over neighboring nodes with the residual connection. Since the
proposed tripartite graph attention is performed over the tripartite graph, we can effectively
diffuse semantic information to different modalities.

3.3. Cause-and-Effect Generator

A Cause-and-Effect Generator (CEG) is proposed to generate cause-and-effect captions
by considering the causal relationships among inferences. It is a sequence-to-sequence
transformer architecture that feeds the strengthened semantic graph (Sv,S e,S p) and
decodes cause-and-effect captions (before Ob, intent Oi, and after Oa) in an autoregressive
manner. In contrast to existing approaches that treat the generation of each caption as a
separate objective, the cause-and-effect generator infers all three cause-and-effect captions
holistically. Formally, we have the function of the CEG fCEG with its parameter W fCEG ,
whose goal is:

Ob,Oi,Oa = fCEG(Sv,S e,S p;W fCEG ). (5)

3.3.1. Encoder

The encoder of the CEG is based on a multi-layer bidirectional transformer, as in BART
and its variant in visual commonsense generation, KM-BART. In contrast to the encoder in
KM-BART, whose input sequence starts with one of the special tokens <before>, <intent>,
or <after> to indicate to the model which cause-and-effect caption should be generated,
the CEG only takes the three sets of semantic graph representations (i.e., Sv,S e,S p), as
it infers all three captions holistically. To inform the encoder about the start and end of
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different input modalities, we add three sets of special tokens: <b_img>, <e_img> for image
embedding Sv; <b_ev>, <e_ev> for event embedding S e; and <b_pl>, <e_pl> for place
embedding S p.

3.3.2. Decoder

The decoders of the CEG are based on a multi-layer unidirectional transformer as it
works in an autoregressive manner during generation. There are a total of three decoders
for the CEG—one each for the generation of before, intent, and after captions. To inform
each decoder about the start of generation, we add three special starting tokens for each
decoder: <before>, <intent>, and <after>. Further, we add a special end inference token
<e_inf> at the end of the target sequence to indicate the stop of a decoding process. During
training, we use teacher-forcing [22] to supervise each decoding step, that is ground truth
tokens are used as the decoder input. The decoders of the CEG only take a right-shifted
target token sequence as the input.

To consider causal relations among cause-and-effect captions, the decoders for intent
and after are connected to those of before and intent, respectively. Through causal connections
between the three decoders, the CEG can attend to the hidden states of the former decoder,
which take the role of cause to generate effect captions (i.e., the proposed intent/after decoder
can attend to not only the hidden states of the transformer encoder, but also the hidden
states of the before/intent decoder), as shown in Figure 2. Formally, we divide the function
of the CEG fCEG in Equation (5) as an encoder ECEG and a set of decoders Dx

CEG, where
x ∈ {b, i, a}. The conventional approaches [1,6] generate the cause-and-effect captions
separately without considering causal relations:

Ob = Dcon(Econ(v, e, p)), (6)

Oi = Dcon(Econ(v, e, p)), (7)

Oa = Dcon(Econ(v, e, p)), (8)

where Econ and Dcon represent the functions of the encoder and decoder in existing ap-
proaches that feed the image v, event e, and place p. On the other hand, the proposed CEG
has sequential connections among decoders to preserve causal relations among cause-and-
effect captions:

Ob = Db
CEG(ECEG(Sv,S e,S p)), (9)

Oi = Di
CEG(ECEG(·), Db

CEG(·)), (10)

Oa = Da
CEG(ECEG(·), Di

CEG(·)). (11)

4. Experiments
4.1. Benchmark Dataset

VisualCOMET [1] is a large-scale benchmark dataset for visual commonsense genera-
tion and is the only available dataset of its kind at present. It consists of over 1.4 million
textual captions of visual commonsense inferences carefully annotated over a diverse
set of 59,000 images paired with 139,000 event descriptions. The visual commonsense
inferences are divided into 1174k, 146k, and 145k examples for training, validation, and
testing, respectively.

Audio Visual Scene-Aware Dialogue (AVSD) [23] provides video, caption, and dia-
logue history consisting of a series of textual QA pairs, as well as follow-up questions about
the video. The goal is to generate a free-form natural language answer to the question. As
both tasks share similar input–output relations, CE-BART can be easily applied to video-
grounded dialogue and can transfer causal knowledge learned from a visual commonsense
generation for better video understanding.
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4.2. Metrics

For generative evaluation, we follow the official object metrics for the VisualCOMET
and AVSD benchmarks, including BLEU [24], METEOR [25], ROUGE-L [26], and CIDEr [27].
The metrics are formulated to compute the word overlapping between each generated
caption and reference caption.

The BLEU score is a basic evaluation method often used in natural language processing.
It measures the precision between the generated caption and the reference caption by
measuring how much the ordered word pairs overlap through n-grams (1 to 4). Although
it has obvious limitations because it lacks consideration of grammatical structures and
synonyms, it is still widely used.

The METEOR score computes the weighted F-score, which is the harmonic mean of
the precision and recall values based on mapping unigrams, which replaces the simple
n-gram precision/recall. The reordering penalty term in METEOR penalizes captions that
contain the correct words, but in the wrong order.

ROUGE is based on the recall value and is mostly used for text summarization evalua-
tion. Depending on the sequence used for recall computation, ROUGE can be divided into
various types; ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S. ROUGE-N is based on
the n-gram recall value. For instance, ROUGE-1 calculates the recall based on the matching
unigram, and so on. ROUGE-L/W/S are based on the Longest Common Subsequence
(LCS), weighted LCS, and skip-bigram co-occurrence statistics, respectively. Instead of only
using the recall value, they use the F-score based on the corresponding sequence (e.g., the
longest common subsequence between the generated and reference caption for ROUGE-l).

The CIDEr score is based on TF-IDF and is proposed for image captioning evaluation.
First, the TF-IDF features are calculated for generated and reference captions based on
the n-gram. Then, the CIDEr score is calculated by the cosine similarity between two
TF-IDF features.

4.3. Experimental Details

We initialized the cause-and-effect generator with a pre-trained BART-based model
with 6 transformer layers in both the encoder and decoder, and a hidden size of 768.
For tripartite graph attention in the structured graph reasoner, the number of heads in
multi-head attention was set to 8. We trained using 4 NVIDIA Quadro RTX 8000 (48 GB
of memory) and Adam optimizer with β1 = 0.9 and β2 = 0.999. The learning rate was
initially set to 0.0001, and the model was trained up to 30 epochs with an effective training
batch size of 512. During inference, we adopted a beam search, and for each set of inputs,
we decoded before, intent, and after captions sequentially.

4.4. Experimental Results on VisualCOMET

We compared our proposed Cause-and-Effect BART (CE-BART) with state-of-the-art
methods on the VisualCOMET benchmark. Table 2 summarizes the experimental results
on the VisualCOMET benchmark on both the validation and test splits, since the current
state-of-the-art method, KM-BART [6], only provides the results on the validation split. We
also provide the results of the ablation study in Table 2 with several variants of CE-BART
in order to measure the effectiveness of the proposed key components of CE-BART. All
the reported performances in Table 2 are the average values of five independently trained
models with different seeds.

Starting from the direct fine-tuning of the BART-based model in VisualCOMET, which
showed slightly lower performance than the previous SOTA method KM-BART, every
component of the proposed CE-BART demonstrated improved performance on all three
metrics. The results of the ablation study suggest that the limitations of existing approaches
that we introduced are valid: (1) conventional vision–language transformers are directly
utilized to learn relationships between input modalities, and (2) every training example is
trained independently without considering relations with others.
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Table 2. Comparison with state-of-the-art methods on the VisualCOMET benchmark. Here, “Proj-
SGR” denotes the graph projection (i.e., Equation (1)), “Intra-SGR” denotes the intra-modality reason-
ing (i.e., Equation (2)), and “Inter-SGR” stands for the inter-modality reasoning (i.e., Equation (3)).
“CEG” stands for the Cause-and-Effect Generator with three decoders (i.e., Equations (9)–(11)). The
best results are in bold.

Methods
Validation Set Test Set

BLEU2 METEOR CIDEr BLEU2 METEOR CIDEr

Baseline [1] 13.50 11.55 18.27 12.71 11.13 17.36
KM-BART [6] 23.47 15.02 39.76 - - -

Variants on CE-BART

BART-base 22.51 14.73 37.86 - - -
+ Proj-SGR 22.47 14.97 38.91 - - -
+ Intra-SGR 23.85 15.72 39.59 - - -
+ Inter-SGR 25.07 18.24 41.07 - - -
+ CEG 28.60 19.32 43.58 - - -

CE-BART 28.60 19.32 43.58 28.14 18.91 42.64

The structured graph reasoner is proposed to capture intra- and inter-modality re-
lations among visual and textual representations. The inclusion of graph reasoning led
to a 3.21 point boost in the CIDEr metric compared to the BART-based model. Among
the components of the structured graph reasoner, intra-modality reasoning provided a
0.68 point gain in CIDEr, and inter-modality reasoning provided a 1.48 point gain. As our
inter-modality reasoning module performs multi-head attention over a tripartite graph,
whose neighborhood is defined as the nodes of a heterogeneous modality, each node re-
inforces its representation with the information from other modalities, and thus, it is able
to comprehend inter-modality relations effectively. The design of our structured graph
reasoner was effective in capturing intra- and inter-modality relations, which is essential in
visual commonsense generation.

The cause-and-effect generator is proposed to generate cause-and-effect descriptions
holistically by considering the causal relationships among inferences. It improved the
CIDEr score by 2.51 points. Through causal connections between three decoders, the
cause-and-effect generator looks at the former decoder, which takes the role of cause, to
generate an effect description. The design of our cause-and-effect generator was effective
in modeling causal relations among generated descriptions, which is essential in a visual
commonsense generation.

The results of our ablation study suggest that the proposed CE-BART can effectively
capture intra- and inter-modality relationships interspersed in multimodal input represen-
tations and can effectively generate cause-and-effect descriptions holistically by considering
causal relations through the cause-and-effect generator with causal connections between
decoders. In our comparison, CE-BART surpassed the other state-of-the-art methods on
both the validation and test splits of the VisualCOMET benchmark. Compared to KM-
BART [6], the state-of-the-art method in the validation split, CE-BART obtained a CIDEr
score of 43.58, an improvement of nearly 4 points. The CIDEr score of CE-BART (42.64)
was nearly double that obtained with the baseline [1], the state-of-the-art method in the
test split (17.36). CE-BART also improved the BLEU-2 score by almost 16 points and the
METEOR score by more than 7 points.

We also provide an in-depth quantitative analysis of the CEG in Table 3 to show
the significance of the dependencies among the three decoders. The motivation behind
capturing relations between training samples is to consider the relations among the before,
intent, and after descriptions while generating them for an image: the current intent is
related to the situation before, and the situation after is related to the current intent. As
the CEG has connections among decoders, the intent decoder can operate by using not



Sensors 2022, 22, 9399 10 of 13

only the image, but also the information from the before decoder. Similarly, the after
decoder can generate predictions with the help of the intent decoder. We conducted
separate evaluations for before/intent/after captions. Without connections among decoders
(i.e., without the CEG), before prediction showed superior performance to intent and after
predictions. However, with connections among decoders (i.e., with the CEG), we observed
a performance improvement in intent and after predictions, as expected, obtained by
considering relations.

Table 3. Analysis conducted on the validation split of VisualCOMET. We provide an analysis of the
behavior of the CEG by observing separate performance evaluations with (w CEG) and without the
CEG (w/o CEG).

Methods
Before Intent After

B2 M C B2 M C B2 M C

w/o CEG 29.7 20.4 45.1 19.4 15.4 40.7 26.1 18.9 37.7
w CEG 30.9 20.9 45.9 25.5 16.6 42.4 29.6 20.2 41.9

4.5. Experimental Results on AVSD

We conducted additional experiments to validate the generalizability of the proposed
CE-BART in other VL tasks. We conducted experiments in the task of video-grounded
dialogue, which is a multi-turn question-answering task. The formal definition of video-
grounded dialogue is as follows: we are given a video, a dialogue history consisting of
a series of textual QA pairs, and a follow-up question about the video, and the goal is
to generate a free-form natural language answer. Both tasks share similar input–output
relations; therefore, CE-BART can be easily applied to the new task of video-grounded
dialogue and can transfer causal knowledge learned from visual commonsense generation
for better video understanding. We trained CE-BART for video-grounded dialogue in two
settings: (1) CE-BART without pre-training on VisualCOMET and (2) CE-BART with pre-
training on VisualCOMET. Through this comparative experiment, we observed that causal
information learned from VisualCOMET could help with understanding the video. Table 4
summarizes the results of the AVSD benchmark. We observed that CE-BART showed
an improvement over existing methods and achieved SOTA performance in all metrics.
By pre-training CE-BART on VisualCOMET, we could further boost the performance,
indicating that causal knowledge trained on VisualCOMET can be successfully transferred
for better video understanding in AVSD. We were able to validate that our proposed CE-
BART can benefit other VL tasks by effectively transferring causal knowledge learned from
VisualCOMET.

Table 4. Comparison with state-of-the-art methods on the AVSD benchmark. We compared CE-BART
with various state-of-the-art systems on the AVSD benchmark: baseline [28], STSGR [29], MTN [30],
MTN-TMT [31], and VX2TEXT [32]. The best results are in bold.

Methods BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L CIDEr

Baseline [28] - - - 0.078 0.113 0.277 0.727
STSGR [29] - - - 0.133 0.165 0.362 1.272
MTN [30] 0.356 0.242 0.174 0.135 0.165 0.365 1.366
MTN-TMT [31] - - - 0.142 0.171 0.371 1.357
VX2TEXT [32] 0.361 0.260 0.197 0.154 0.178 0.393 1.605

CE-BART 0.364 0.266 0.203 0.158 0.181 0.400 1.681
CE-BART 0.365 0.268 0.205 0.161 0.183 0.404 1.721w pre-train
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4.6. Qualitative Analysis

Figure 3 shows examples from the test split of VisualCOMET and compares predictions
from CE-BART and the baseline. CE-BART successfully utilized the SGR, which captures
intra- and inter-modality relationships and is flexible in selecting important information
regardless of whether it is textual or visual. In the first example, CE-BART noticed that the
text of the father holding his daughter’s shoulder was not crucial information and focused
more on the image. With this ability to consider and select crucial information, in the
second example, CE-BART focused on the key object in the scene and people’s interaction
centered on that object and avoided stating the obvious. Further, as the CEG was trained
to successively generate captions through causal connections, it had the information from
the former decoder, which took the role of cause to generate the effect caption. In the third
example, CE-BART was continuous regarding the contents, whereas the baseline model
produced a discontinuous caption. In the lower-right example, the baseline model produces
overlapping captions, while CE-BART effectively generated the rich dynamic story of the
visual scene.

Baseline
Before  Intent After

Before  Intent After Before  Intent After

Before  Intent After

CE-BARTCE-BART

Baseline

Walk into the foyer

Lean towards Person4
Instruct Person4 on 

what to do next
Chat with Person4

Walk into the room with 
everyone

See what was in the 
doorway

Ask Person2 to look at 
the picture

Ask Person2 what she 
thinks of the picture

Discuss the content of 
the locket

Talk with Person2 Admire the locket Get off the bus

Place : Outdoors
Event : Person4 looks horrified as he watches events unfold

Place : On a bus
Event : Person1 studies the picture in Person2’s locket

Baseline
Before  Intent After

Before  Intent After Before  Intent After

Before  Intent After

CE-BARTCE-BART

Baseline

Be called to the scene

Walk towards Person1 Pursue a fugitive Make Person5 feel secure 

Put Person5 in a police carSearch Person5 for 
weapons

See something disturbing 
in front of him

Run away from the sceneCapture the moment

Find someone he wants 
to record

Record footage of the 
events from the field

Take footage from the 
scene

Place : In the foyer of a house
Event : Person1 is a father holding the shoulder of his daughter Person4

Place : In a street
Event : Person5 has his hands out being searched by the police

Figure 3. Four examples from the test split of the VisualCOMET benchmark.

5. Limitations

We believe that our proposed CE-BART has several limitations that can be addressed
through further experiments in the future. First, its scalability is limited due to the require-
ment of large GPU resources. We conducted experiments using four NVIDIA Quadro RTX
8000 units (48 GB of memory), which are extremely expensive. Second, its scalability to
control the time scale is limited. There is no factor in the current task setting that selects
how much of a past/future situation is required. We will further develop our methods to
overcome the limitations of the model.

6. Conclusions

We proposed a novel cause-and-effect BART for the task of visual commonsense gen-
eration. The proposed CE-BART consists of two major components: (1) a structured graph
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reasoner and (2) a cause-and-effect generator. The structured graph reasoner builds seman-
tic graphs for individual modalities and strengthens their representations by capturing
intra- and inter-modality relations among graph structures. The cause-and-effect generator
is a transformer architecture with three decoders, one each for generating before, intent,
and after captions. In experiments on the VisualCOMET and AVSD benchmarks, CE-BART
achieved new state-of-the-art performance.
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