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This paper considers a hierarchical sparse concept representation for complex scene
analysis. Low-level visual features, foreground pixels and optical flows, are commonly
used for the scene analysis. However, these features are sensitive to noise and have
high-dimension to represent complex behavior of various objects. The considered
hierarchical sparse concept representation aims to cope with noise of low-level features
and reducing uncertainty in determining behavior patterns. In this paper, the task of
complex scene analysis is formalized as discovering high-level behavior patterns which
represent video context. The experimental results show that the considered algorithm
yields good performance using complex video datasets.

Introduction

Automatic detecting representative behavior
pattern has become a challenging task for
complex scene analysis (CSA). In the past few
years, various algorithms have been proposed
to extract semantic behavior patterns from
video scenes. They focused on analyzing com-
plex and crowded video scene based on disco-
vered specific patterns from low-level visual
features. Previous algorithms usually consider
video data as a set of visual features which are
represented using a histogram of occurrences
of feature, and the extracted features are
directly used for CSA. However, these feature
based algorithms have mainly two problems:
(1) low-level visual features have limitation to
represent high-level semantic information of
behavior patterns. Hence, high dimensional
feature space is required and computational
complexity is increased; and (2) low-level vis-
ual features are sensitive to noise and some
occlusion from movements of various objects
in the complex video scene.

Recently, statistical machine learning based
algorithms have shown good performance in
the task of CSA based on: multi-scale methods
[1, 2], hierarchical methods [3, 4, 5], Bayesian
methods [6, 7], etc. These algorithms try to
implicitly handle varying noise and uncertain-
ty in discovering semantic behavior patterns
from high dimensional visual feature spaces.

This paper considers a hierarchical sparse
concept representation (HSCR) algorithm for
the complex video scene analysis. In this

paper, the task of CSA is considered as the
problem of discovering a set of high-level
semantic behavior patterns using hierarchical
dictionary learning and sparse concept
representations. The considered HSCR
algorithm aims to cope with noise of high
dimensional low-level visu-al features and
reducing uncertainty in discov-ering semantic
behavior  patterns while pre-serving
discriminative information of primary patterns
and dimensionality reduction.
Non-object-based bag-of-words representat-
ion is used as low-level visual features similar
to previous literature. However, the considered
HSCR algorithm tries to discover multi-level
behavior patterns instead of using noisy low-
level visual features directly. Complex video
scenes usually contain multiple movements of
various objects over time and space, this paper
assumes that these movements can be catego-
rized into low-level and high-level behavior
patterns. Low-level behaviors (e.g. moving of
vehicle and pedestrians) can be characterized
using representative movements which occur
in a small range of spatial and temporal regi-
ons. High-level behaviors (e.g. traffic flows by
signal) can be described as periodically repeat-
ed patterns using a set of low-level behavior
patterns. Considering these hierarchical struc-
tures of behavior patterns can be helpful to
analyze video scene more accurately than
using single behavior patterns. In considered
HSCR, behavior patterns of each level can be
described using small number of basis which



related to most representative behavior pattern
in each level. For this, hierarchical basis learn-
ing and sparsity constraint are considered not
only reducing dimensionality of features but
also preserving discriminative information.

Review of Sparse Representation

Let X =[x,,....,X,]e R""is a set of N data

with high-dimensional feature space. Matrix
factorization (MF) algorithms [8, 9, 10] are
common approaches to condense data by dis-
covering a set of new basis vector and the new
representation with respect to the new basis for
each data. The aim of MF is finding two matri-
ces, dictionary D and sparse representation A
, whose product can well approximate X.
Given a dictionary D =[d,,...,d, ] R"*X, the
sparse representation A = [a,,...,a,]€ RN for
X can be obtained by solving:

A =argmin, || X-DA |} s.tVia,|,<e (1)

Where, || X-DA | denotes the reconstruction
error, and |4, [[,<¢& is the sparsity constraint.
Each column of D is a basis vector and each
column of A is the K dimension representation
of the original input data with respect to the
new basis D.In this sense, MF can be regarded
as a dimensionality reduction algorithm since
it tries to reduce the dimension from M to K.
The performance of sparse representation A
depends critically on the constructed D.

Hierarchical Sparse Concept
Representation

Given a data set of high dimensional feature
X, the purpose of HSCR algorithm is finding
low dimensional high-level behavior patterns
while reducing noise and dimensionality of
features with reducing information loss. It can
be obtained by solving the minimization prob-
lem as follows:

ming p ¢ > [1% =D Dys |5 +41Dys, 1] (2)
where the dictionary D, € RY*Z is the basis of
low-level behavior patterns and D, e R”" is
the basis of high-level behavior patterns The
matrix S € R**" indicates HSCR of input data
X and ¢ is the regularization parameter. Eq.
(2) 1s not jointly convex to D, ,D,,,S.
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However, it is convex with respect to each of
them if others are fixed. Hence, the HSCR can
be designed using an iterative algorithm to
alter-natively optimize each matrix base.
The HSCR algorithm has three-step in terms
of dimensionality reduction and MF based on
sparse concept coding algorithm [12]. The first
step of HSCR is low-level behavior basis lea-
rning by exploring the low-dimensional intri-
nsic geometric structure of the input data inste-
ad of using visual feature space directly. Spec-
tral regression [11, 12] is used for reducing
dimension of data and finding manifold of the
ambient space to model the local geometric
structure of data with weight W . Similarly, in
the previous MF algorithm, considered HSCR
tries to learn low-level behavior basis matrix
D, which can well fitto Y ={y,}”, e RV . It
can be obtained by solving the optimization
problem as follows:
o 1Y =X'D, [ +a| D | (3)
where || D, |[; is a regularization term to avoid
over-fitting and « is the regularization param-
eter. Where, the optimal Y can be obtained by
solving Eq.(4) using the minimum eigenvalue
eigen-problem of LY =AD Y .

Y =argmin(Y'LY)(Y'D,Y) 4)

Here, L=D, —Wand D, Z W The weight
matrix WlS constructed using EMD distance.
After obtaining low-level behavior basis D ,
the second step is computing the low-level
sparse concept representation S, by solving the
optimization problem as follows:

ming, 3 1% =Dysy |5 +B1Is 1] ()
where S, *D,;S and I8 [liis the L1-norm re-
gularization to enforce the sparsity. The Least
Angel Regression [13] is used for solving the
optimization problem in Eq. (5). In this step,
S, can be regarded as representative low-level
behavior patterns using small number of basis
of D . The last step of HSCR algorithms is
learning of high-level behavior basis and find-
ing HSCR by solving the optimization probl-
em as follows:
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ming, ¢ > IS = Disy [ +7 I8, L1 (6)

where Dy, indicates the basis matrix of high-
level behaviors and S is the HSCR using D,
For this, D,; can be obtained using Eq.(3) with
respect to S, , and S,js calculated using Eq.(5)
with respect to S; and Dy, iteratively. Finally,
the considered HSCR algorithm can be convert
original high-dimensional low-level features
X to low-dimensional HSCR S, while remo-
ving noise using dimensionality reduction and
preserving discriminative information.

Experiments and Results

In this section, we investigate the effective-
ness of the considered HSCR algorithm for
CSA. The task of CSA is considered as a multi
-class clustering problem similar to previous
literatures [2, 3, 7, 14, 15]. For this, we conv-
ert each high-dimensional test data into low-
dimensional HSCR by using the learned low-
level and high-level behavior basis from traini-
ng data. Then, each converted test data is
clustered into the K number of primary high-
level behavior patterns by the nearest centroid
criterion. To verify the effectiveness of HSCR,
various experiments were conducted on the
publicly available QMUL [3] and CVBASE
'06 [16] dataset. All dataset contains complex
behavior patterns of a large number of objects
such as vehicles and human movements. A
detailed description of experimental parameter
is summarized in Table 1.

Table 1. Parameter setup (train)

Dataset M N|z|K|la | f 4
Junction-1 | 4176 | 73 | 8 | 2 | 0.1 | 0.02 | 0.4
Roundabout | 4176 | 146 | 8 | 2 | 0.2 | 0.02 | 0.56
Basketball | 4292 | 50 | 4 | 2| 0.2 0.16 | 0.08
Handball | 4524 | 100 8 | 2 | 0.2 ] 0.32| 0.1

The Traffic datasets: As shown in Figure
1, The QMUL dataset contains complex traffic
scenes and have been extensively used in
previous CSA literatures [2, 3, 7, 14, 15]. Each
dataset was recorded by a stationary camera
with a resolution of 360x288 (25 FPS).

(a)J uction— 1

(b) Roundabout
Fig. 1. QMUL datasets

Each video clip was spatially quantized into
36x29 cells and 4 directions of quantized
optical flow were extracted in each cell.
Hence, the size of low-level feature dimension
M is 4176. The test dataset consist of 39, 59
video clips for the Junction-1 and Roundabout,
res-pectively. For fair comparison between the
considered HSCR algorithm and the state-of-
the-art algorithms, the same datasets and grou-
nd truth labels [3, 14, 15] are used. For the
database in hand, there are two main temporal
phases of the primary behavior patterns: verti-
cal and horizontal traffic flows. The quanti-
tative results of the clustering accuracy based
on primary high-level behavior patterns are
represented in Table 2.

Table 2. Clustering accuracy (QMUL)

Algorithms Junction-1 (%) | Roundabout (%)
K-means 53.75 63.79
pLSA [3] 89.74 84.46

HpLSA [3] 76.92 72.30

Cas-pLSA [2] 89.70 76.20
DDP-HMM [7] 87.18 85.14
EMD-L1 [15] 92.30 86.40
SparseEMD [16] 89.74 90.00
SRC [10] 92.30 64.41
D-KSVD [9] 92.30 62.70
SCC [12] 89.74 89.83
HSCR 94.87 91.53

As shown the experimental results in Table
2, it confirmed that the considered HSCR
algorithm outperforms the state-of-the-art alg-
orithms using QMUL dataset.

(b) Handball
Fig. 2. CVBASE '06 dataset

(a) Basketball

The Sports dataset: As shown in Figure 2,
CVBASE '06 dataset depicts complex sports



environments both basketball and handball.
The data was recorded by a wide view camera
in 5 minutes with 366x288 pixels (25 FPS) and
10 minutes with 384288 pixels (25 FPS) for
basketball and handball dataset, respectively.
This sports video includes complex movement
from various players in the stadium without
moving rules. Hence, it is more difficult to
distinguish behavior patterns. To discover high
-level behavior patterns, we use two types of
group activity as high-level behavior patterns:
team offense and defense. To obtain the low-
level visual features, video data were divided
into several video clips every 3 sec. The test
dataset consists of 50, 100 video clips for the
basketball and handball data, respectively. The
quantitative results of the clustering accuracy
based on primary high-level behavior patterns
are represented in Table 3. The experimental
results show that considered HSCR algorithm
outperforms all the others.

Table 3. Clustering accuracy (CVBASE '06)

Algorithms Basketball (%) Handball (%)
K-means 84.0 65.0
pLSA [3] 64.0 67.0
HpLSA [3] 70.0 72.0
SRC [10] 94.0 87.0
D-KSVD [9] 94.0 87.0
SCC[12] 76.0 70.0
HSCR 96.0 88.0

Conclusion

This paper considers a HSCR algorithm for
complex scene analysis. The HSCR algorithm
determines hierarchical behavior pattern using
low-level and high-level behavior basis. The
discovered HSCR can be capture most primary
pattern to analyze behaviors from the complex
video scene, while HSCR algorithm tries to
removing noise using dimensionality reduction
and sparsity in each level and preserving dis-
criminative behavior patterns using hierarchy.
In the experiments, the HSCR has been used
for discovering recurrent primary high-level
behaviors in various complex video datasets
and has been compared with state-of-the-art
algorithms. The extensive experimental results
show that the considered algorithm achieved
good performance for complex scene analysis.
In the future, we will extend considered HSCR
algorithm for irregular behavior detection.
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